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Abstract. We report here experiments on two-dimensional funnel flow of 1 mm diameter glass beads on
an inclined plane. We have investigated the properties of the flow according to the outlet size D of the
funnel and the gravity. We have identified three different regimes. For small funnel outlet sizes, there is no
significant change in flow density: the flow is rather steady and homogeneous. For intermediate outlet sizes
(20 mm < D < 80 mm), the flow is intermittent, consisting of spatially ordered density waves propagating
upwards. At bigger outlet sizes, density waves do not exhibit any ordering and the flow dynamics becomes
chaotic. In addition, we find that the flow dynamics is independent of the funnel opening angle except
close to the channel flow configuration. Finally, it is stressed that the interactions between the beads and
the inclined plane play a crucial role in the mechanism of formation of density waves.

PACS. 83.50.v Deformation; material flow – 83.70.Fn Granular solids

1 Introduction

When flowing, granular systems often show fascinating be-
haviours such as avalanches [1], segregation [2,3], density
waves [4–10]... which are mainly due to their dissipative
character. In this paper we examine the flow properties
of a mono-layer of beads rolling down an inclined plane
through a two-dimensional funnel. The interest to use a
two-dimensional system lies in the fact that the observa-
tion and the measures are direct and non-destructive. This
system generates under certain conditions density waves
(see Fig. 1) that we want to analyse and understand.

There are many granular systems which exhibit den-
sity waves when they are flowing. A first example is given
by flows in silos where spatio-temporal variations of den-
sity are observed. The density variations are commonly
associated with the presence of rupture bands appearing
periodically in time at the junction of the cylindrical part
and the conical part [11]. These asymmetric bands seem
mostly to be the result of arching [12] and dilatancy prop-
erties of a dense converging flow. Other types of flows show
density waves such as flows in narrow tubes [6,10] or in
hour-glass [4,8,13]. In these flows, the density changes are
mainly due to the interaction of the grains with the in-
terstitial gas. However, even in absence of gas, flows can
exhibit drastic changes of density. In that case, the den-
sity variations are traced back to the roughness of the
grains [5] which increases the energy dissipation.

a e-mail: avalance@truffaut.univ-rennes1.fr
b UMR 6626

Fig. 1. Snapshot video picture of the flow in the regime where
density waves are created. This wave regime appears for large
funnel outlet sizes. The snapshot shows only the lower part of
the funnel (this corresponds about to 30 cm long). The outlet
size is 100 mm and the open angle of the funnel is 24◦ whereas
the inclination angle of the plane is 5.6◦.

Flows through two-dimensional funnel on an inclined
plane exhibit also density waves, as to be seen below. In
this system, the formation of density waves is essentially
due to the interactions between the beads and the un-
derlying plane coupled with the geometry of the funnel.
Such flows have already been investigated by Veje and Di-
mon [9]. They have used monodisperse brass beads and
examined the flow properties in the case where the fun-
nel is close to a channel geometry (i.e., the funnel an-
gle 2α is smaller than 10◦). They have identified three
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regimes. When 2α > 4◦, the flow is dense and steady
(the beads arrange in triangular lattice). An intermittent
regime, consisting of quasi-periodic kinematic waves, is
found for 0.2◦ ≤ 2α ≤ 2◦. Below 0.1◦ these waves be-
come stationary. In the present study, we are interested
in the flow properties in the case where the funnel geom-
etry has a large opening angle (i.e., 2α ∼ 60◦). Flows in
such a geometry can be compared with discharges in real
three-dimensional silos. Furthermore, we have used glass
beads whose surface roughness and elastic properties dif-
fer from those of brass beads. This difference is revealed
to be of paramount importance for the flow behaviour
which is very sensitive to the nature of the friction force
between the beads and the plane. Contrary to brass beads
which tend to arrange in a regular lattice during the flow,
glass beads never exhibit such regular arrangement be-
cause of their imperfections. As a consequence the flow of
glass beads is expected to behave differently. Indeed, in
large-angle funnel geometry, flows of brass beads remain
homogeneous during the discharge, whereas flows consist-
ing of glass beads have a strong tendency to exhibit den-
sity waves. We have analysed the flow properties varying
the outlet size of the funnel and the gravity through the
inclination angle β of the plane. We have built a phase dia-
gram where three different types of flows have been clearly
identified. (i) For small outlet sizes D (D < 20 mm) and
rather high plane inclination angle β (4.6◦ < β < 10◦),
the flow is found to be nearly homogeneous and steady
(regime I). (ii) Either increasing the outlet size or decreas-
ing the plane inclination, one observe a transition towards
the formation of density waves. Density waves are created
close to the outlet at regular time intervals propagating
upwards. As a consequence, the density waves are regu-
larly spaced. This flow regime is commonly called “inter-
mittent flow” (regime II). (iii) Finally, for larger outlet
size (D > 80 mm) and high gravity (β > 5.6◦), one still
observe density waves but their dynamics is no longer reg-
ular and looks rather chaotic (regime III).

This paper is organized as follows. In Section 2 we de-
scribe our experimental setup. In Section 3 we determine
the conditions under which the discharge of the funnel can
be initiated, whereas Section 4 is devoted to the analysis
of the resulting flow regimes varying the system parame-
ters such as the angle and the outlet size of the funnel, and
the inclination of the plane. In Section 5 we focus on the
intermittent regime characterized by the presence of peri-
odic density waves and discuss the possible mechanisms of
its formation. Finally, in Section 6 we sum up our results
and present some outlooks.

2 Experimental setup

Our experimental setup sketched in Figure 2 is composed
of an inclined glass plane of 2 m long and 1 m width. The
angle β characterises this inclination. The plane is smooth
and regularly cleaned after each experiment in order to be
sure that no dusts or grease eventually perturb the flow
during the measurements. On the plane two PVC bars
play the role of a funnel (see Fig. 3). The funnel is filled
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Fig. 3. Schematic view of the funnel.

with a mono-layer of glass beads whose average diame-
ter is d = 1 mm and size dispersion is characterized by
σd ' 0.03 mm. During the discharge, the outflow is mea-
sured with a Mettler electronic balance with a sampling
frequency of 8 Hz. Moreover the density variations of the
flow are measured by optical means. A laser beam is en-
larged by lens and deflected on the plane at about 30 cm
above the outlet. The quantity of light passing through
the plane is then focused on a photo-diode whose signal is
amplified and stored with a sampling frequency of 50 Hz.
The cross section of the laser beam is about 12 cm2 which
corresponds to the illumination of 1 300 beads for high
packing fraction. This optical system allows us to deter-
mine the relative flow density. Indeed, the signal received
by the photo-diode is intimately related to the flow den-
sity. Finally, in order to get an overall view of the flow in
the silo, a video camera films the discharge.

3 Initiation of the flow

At a beginning of a run, the outlet is blocked and the
funnel is filled with a mono-layer of beads. The inclina-
tion of the plane is an important parameter for the flow.
The plane should be inclined above a critical angle in or-
der to initiate the flow. In the other hand, the inclina-
tion should not be too steep if we want to keep the flow
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two-dimensional. The requirement of these two conditions
limits the range of our investigation to inclination angles
varying from 3◦ to 10◦. The critical plane inclination angle
βc above which the flow can be initiated depends strongly
on the initial packing fraction of the pile. Indeed we have
found that for a packing fraction C ≈ 0.78 (loose pack-
ing), βc ≈ 2◦. For higher initial packing fraction C ≈ 0.84
(dense packing) — obtained by tapping slightly on the
plane —, βc goes up to 5◦. By increasing the packing
fraction, contacts between beads become stronger and one
thus has to enhance the gravity force in order to make the
pile flow.

As the outlet is unblocked, after a transient period the
flow reaches a “permanent” regime which is independent
of the initial configuration of the pile. For the runs re-
ported in this paper we have always used a loose packing
initial configuration. In that case, the transient is shorter
and consequently the “permanent” regime lasts longer.

Although the transient period is not the central point
of our preoccupation, we shall make a few comments about
its characteristics. The transient is characterised by the
propagation of a decompaction front. Immediately after
the outlet is unlocked, one can clearly see a front moving
upwards. Above the front, the material is compact and
the grains are immobile. The rotation of the beads are
frustrated by their neighbours and they can not roll as
long as the neighbours downhill have not moved. Below
the front, the material is dilute and the beads freely fall
towards the outlet. The time lag between the motion of
the first rows of beads of the pile and the ones at the top
is of order of several seconds. The transient is of course
sensitive to the initial configuration of the pile.We have
noted that the propagation speed Vd of the decompaction
front increases as the packing fraction decreases. For
β = 5◦, Vd is found to approach 25 cm s−1 when the ini-
tial packing is loose whereas Vd is of order of 8 cm s−1 for
dense packing.

The mechanisms of the front propagation is not clearly
understood at this moment. We think however that the
friction between the beads and thus the surface proper-
ties of the beads should play a preponderant role in the
decompaction process. We can easily understand that the
presence of micro-asperities on bead surface strengthen
the contact between beads and increases resistance to ro-
tation. But in the present state of our knowledge we are
unable to relate the time needed for a bead to leave the
pile to its surface properties nor to the configuration of
the pile.

4 General behaviour of the flow

The general features of the flow are sketched in Figure 3.
When the funnel angle is rather large (i.e., 2α = 60◦),
two types of zones can be distinguished: (i) a stagnant
zone and (ii) a flow zone. In the stagnant zone the beads
are nearly at rest. The boundary between the two zones is
identified as the shear band. The shear bands describe a
cone with an opening angle 2αc ' 20◦ (called the angle of
approach) that is found to be independent of the opening

angle 2α and the outlet size D of the funnel. The mass
transfer from the stagnant to the flow zone is mainly pro-
duced by avalanches at the free top surface. This type of
configuration flow is commonly called funnel flow. When
the funnel opening angle 2α is lower than the angle of ap-
proach 2αc, all the beads participate to the flow and the
configuration is called mass flow.

We have investigated the flow properties according
to the outlet size D and the plane inclination β. In the
first set of experiments presented in this section, the fun-
nel opening angle has been kept constant and equal to
2α = 60◦. We have distinguished three different regimes
whose features are clearly identified thanks to the optical
measurements.

When D < 20 mm and 4.6◦ ≤ β ≤ 10◦, the flow
looks rather homogeneous and presents no apparent den-
sity variations (regime I). The intensity I of the mea-
sured optical signal shown in Figure 4a exhibits no signif-
icant fluctuations. Furthermore the autocorrelation func-
tion C(τ) [which is defined by C(τ) = (〈I(t)I(t + τ)〉 −
〈I〉2)/(〈I2〉 − 〈I〉2)] does not show any sign of periodicity.

The regime II is characterised by the presence of den-
sity waves which are emitted periodically in time from the
funnel outlet. This regime is referred to as the intermit-
tent regime. The analysis of our experimental data has
lead us to divide this regime into two distinct sub-regimes
(IIa and IIb).

The first one (IIa) is characterised by the optical sig-
nal shown in Figure 4b. Although the signal does not look
very regular, it exhibits peaks that appear nearly period-
ically in time. Indeed the time correlation function shows
a peak at τ ' 0.5 indicating the periodicity of the signal.
The direct observation of the flow allows us to state that
the intensity variation of the optical signal corresponds
to the passage of density waves. These waves are created
periodically in time with the period T in the vicinity of
the funnel outlet and move upwards to the free surface.
The optical signal shows moreover that the magnitudes
of the density waves in this regime are rather weak and
uncorrelated, and undergo large fluctuations. This regime
is found to appear for D < 20 mm and 3.6 ≤ β ≤ 4.1◦.

The other intermittent regime (IIb) (see Fig 4c) is
characterized by a very regular optical signal with a well-
defined period T (of order of half a second for the ex-
ample shown in the figure). This indicates that the den-
sity waves are not only emitted regularly in time but
they have also the same magnitude. As a consequence,
they propagate at the same speed V (of order of 25 cm/s
for the example shown in the figure) and exhibit there-
fore a spatial ordering characterized with a wavelength
λ = V0/T ' 12.5 cm. This regime takes place for larger
funnel outlet sizes (20 mm ≤ D < 80 mm).

The regime III, although it is also characterized by
the presence of density waves, is quite different from the
intermittent regime. In this regime, the density waves do
not appear regularly in time but are created at erratic time
intervals. Furthermore some density waves die out before
reaching the free top surface. As a consequence, dynamics
of density waves does not exhibit any temporal or spatial
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Fig. 4. Variation of the optical signal during a discharge:
(a) regime I [D = 9 mm, β = 7◦, 2α = 60◦], (b) regime IIa
[D = 9 mm, β = 3.6◦, 2α = 60◦], (c) regime IIb [D = 40 mm,
β = 3.6◦, 2α = 60◦].
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ordering and looks rather chaotic. The characterization of
this regime is therefore delicate. This chaotic regime is
observed for large values of D and β (D > 80 mm and
β > 5.6◦).

The classification that we have made thanks to the
optical measurements allows us to build a phase dia-
gram which is presented in Figure 5. The domains associ-
ated to the different regimes are relatively well separated.
The transitions from regime IIa to regime IIb, and from
regime I to regime IIb which occur by varying the outlet
size D are relatively sharp and well defined. This is not the
case for the transition from regime IIb to regime III whose
location suffers from uncertainties. Indeed, for flows with
large outlet sizes (D ∼ 80 mm), the experimental data are
poorly reproducible. This traces back to the fact that at
high flow rate the electrostatic forces become important
and their magnitude are extremely sensitive to the degree
of humidity in the air which must be controlled properly.

5 The intermittent regime

5.1 Experimental results

In order to better understand the mechanisms of for-
mation of the density waves, we focus our attention on
the intermittent regime and especially on the regime IIb
which exhibits regular density waves. As the optical sig-
nal in this regime is quasi-periodic, we define an addi-

tional quantity Fc =
(
〈I2〉 − 〈I〉2

)1/2
/〈I〉 that will be

referred to as the contrast factor (we recall that I is
the intensity of the optical signal). This quantity mea-
sures the variance of the optical signal normalized by its
mean value. (The normalization is needed in order to sup-
press the effect of the amplification of the measured op-
tical signal.) Physically, Fc is a measure of the magni-
tude of the density waves observed during a discharge.
To be more specific, Fc can be estimated as a function of
the minimum and maximum packing fraction of the flow:
Fc ' (Cmax − Cmin)/(Cmax + Cmin). An increase of the
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Fig. 6. Variations of the flow rate W (a), the period T (b)
and the contrast factor Fc (c) as a function of the outlet
size D for two plane inclination angles: β = 3.6◦ (•) and
β = 7◦ (�). 2α = 60◦.

ratio Cmax/Cmin entails a raise of Fc. For a well marked
wave (i.e., Cmin close to 0), Fc tends to 1.

Figure 6 shows the variations of the flow rate W , the
period T and the contrast factor Fc as a function of D
ranging from 6 to 60 mm. We have displayed the results
for two values of the plane inclination angle (β = 3.6◦

(•) and β = 7◦ (�)). We can see that the flow rate W
increases with the outlet size D. One can also note that
when the flow is normalized by (sin β)1/2, the two curves
corresponding to β = 3.6◦ and β = 7◦ collapse. Thus
W seems to scale as (sinβ)1/2. A further analysis shows
in addition that W ∼ D1.2. A simple dimensional analy-
sis gives W ∼ (g sinβ)0.5D1.5 for a two-dimensional flow
(this scaling is in fact known under the name of “Berveloo
correlation” [14–16]). The scaling with D is thus slightly

different from that given by the Beverloo correlation. Al-
though the difference is relatively tiny, it is tempting to
conjecture that this is a signature for the presence of den-
sity waves as it is suggested in [16].

The period T and the contrast Fc exhibit different fea-
tures for the two plan inclinations:

(i) For β = 3.6◦, we can clearly note two different
behaviours. When D < 20 mm, T and Fc do not vary
significantly, whereas for D > 20 mm they increase prac-
tically linearly with D. This change of behaviour corre-
sponds in fact to the transition from the regime IIa to the
regime IIb. The values of the contrast factor Fc (Fc ' 0.1
which corresponds to a ratio Cmax/Cmin ' 1.2) confirm
that the density waves in the regime IIa have a rather
weak magnitude. Furthermore their magnitude seems to
be independent of the outlet size. In the regime IIb, the
magnitude of the density waves get bigger and bigger as
the outlet size increases (for D = 55 mm, Fc ' 0.36 which
corresponds to a ratio Cmax/Cmin ' 2). We should point
out that the contrast factor Fc (or equivalently the wave
magnitude) seems to vary continuously at the transition.
This is not the case if we look at the period T . One can
observe an abrupt decrease of T at the transition which
should indicate a change in the mechanism of creation of
the density waves.

(ii) For β = 7◦, T and Fc show no transition simply
because for such plane inclination the regime IIa does not
exist. For D < 20 mm the flow is homogeneous (regime I)
and there are not any density waves (the contrast factor
is nearly zero as can be seen in Fig. 6c). We can note
also that for D > 20 mm the values of T and Fc coincide
with those found for β = 3.6◦. This means that in the
regime IIb the period and magnitude of the density waves
seems to be insensitive to the plane inclination. Finally, a
careful inspection of the data tends to show that T ∼ D
in the regime IIb.

An other important quantity which is necessary to
complete the description of the flow dynamics is the prop-
agation speed of the density waves. We have measured
the mean velocity V of the waves as a function of the out-
let size D for different gravities (i.e., plane inclination)
(see Fig. 7). One can clearly see that the wave velocity
decreases with D and increases with the gravity. How-
ever, it should be noted that for the inclination β = 3.6◦,
two regimes are observed: for D < 30 mm (i.e., in the
regime IIa), the wave speed remains approximatively con-
stant, whereas for D > 30 mm (i.e., in the regime IIb),
it decreases. This transition is not seen at higher gravity
since only the regime IIb exists. These results confirm that
the waves in the regime IIa are of different nature of those
of the regime IIb.

The decrease of the wave velocity with the outlet D
can be understood thanks to the measurements of the con-
trast Fc. Indeed, assuming the observed waves are shock
waves, we can estimate the propagation speed V of the
waves: V = (C2V2 − C1V1)/(C2 − C1) where C1,2 and
V1,2 are the packing fraction and the velocity just before
and just after the wave front. C1 corresponds therefore
to the packing fraction Cmax of the high-density region
and C2 to that of the low-density region (i.e., Cmin).
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In addition, since the beads are observed to be momen-
tarily stop at the wave front, we will assume that V1 ' 0.
V2 is the velocity Vb of the beads in the low-density re-
gion. It follows that the wave velocity is approximatively
given by V = −Vb/(Cmax/Cmin − 1) (the minus sign
indicates that the wave moves in the direction opposite
the flow). At high gravity, we find using the data of Fc
that the diminution of the wave velocity with the out-
let size D can be attributed essentially to the increase of
the contrast Fc (which is closely related to Cmax/Cmin)
(see Fig. 6c) while Vb remains approximatively constant.
For β = 7◦, Vb can be estimated at 100 cm/s. At lower
gravity (i.e., β = 3.6◦), the behaviour seems to be more
complicated since Vb is found to increase significantly
with D.

Finally, we have investigated the change in the flow
dynamics as we vary the opening angle of the funnel. In
Figure 8 are displayed the variation of W , T and Fc as
a function of the funnel angle 2α. Unexpectedly, the flow
rate has a maximum at 2α ∼ 8◦. When one starts from
the channel geometry (2α = 0) and increases the fun-
nel open angle up to 2α = 8◦, the flow rate increases
rapidly. At 2α = 8◦, it reaches a maximum and beyond
this value, it decreases regularly. We find that W ∼ α−0.1

which is quite different from the usual power-law behavior
(W ∼ α−0.5; see [15]). This discrepancy may be again due
to the presence of density waves during the discharge. The
variations T and Fc as a function of the funnel opening
angle show a quite different behaviour. As long as 2α is
bigger than 20◦, T and Fc remain approximatively con-
stant and as soon as the funnel opening angle gets smaller
than 20◦, they increase strongly. In particular, T is found
to scale as T ∼ α−1 ∼ (tanα)−1. The angle of 20◦ cor-
responds exactly to the angle of approach at which the
transition between the funnel flow and the mass flow oc-
curs. It seems rather clear that in the funnel flow regime
the flow dynamics should be independent of the funnel
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Fig. 8. Variations of the flow rate (a), the period T (b) and
the contrast factor Fc (c) as a function of the funnel opening
angle 2α. β = 5.6◦ and D = 45 mm.

opening angle 2α since the flow is confined in a cone whose
effective opening angle is independent of α. Conversely, in
the mass flow regime, the flowing region extends over the
all funnel and the properties of the density waves are ex-
pected to be sensitive to the funnel angle. These features
are clearly seen through the behaviours of T and Fc but
not through that of W which is quite surprising. First,
W is not independent of the opening angle for 2α > 20◦,
as we would have expected, and second the presence of a
maximum at 2α ∼ 8◦ remains unexplained. The first fea-
ture can be traced back to the fact that the shear bands
close to the funnel outlet are curved. It means that the ac-
tual angle of approach measured near the outlet is larger
than 2α ' 20◦ . Furthermore it increases with the fun-
nel open angle. Thus, since the flow rate will depend on
the angle of approach at the outlet, this may explain why
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beyond 2α ' 20◦ the flow rate decreases1. The second
feature (i.e., the maximum in the flow rate) has already
been observed by Veje and Dimon [9] in their experiment
using brass beads. However, whereas in their experiment
the maximum in the flow rate is clearly a consequence
of the fact that the funnel was bed from a reservoir, in
our experiment where there is no reservoir (the funnel is
just filled up to a certain level) this occurs for completely
different reasons which have not been yet identified.

5.2 Interpretation

Here we will focus our attention on the formation mech-
anism of the density waves observed in the regime II and
will propose explanations to interpret some of our exper-
imental results.

We have seen that the frequency (or the period T ) of
the creation of density waves is essentially controlled by
the geometry properties of the funnel. Indeed, T scales as
T ∼ D/ tan θ where D is the outlet size of the funnel and
θ the opening angle of the flowing region. We propose a
simple model which allows us to qualitatively explain the
behaviour of the period T .

First of all, we should recall that the density waves
are created close to the outlet of the funnel and propa-
gate upwards to the free surface. A density wave can be
seen as a plug (i.e. a high density region) that is formed
at the funnel outlet and then moves upwards. The plug
is fed by the material coming from above while below the
plug the material is dilute and falls nearly freely. As the
plug moves upwards, more and more material is leaving
the plug simply because the lateral extent of the plug gets
larger. Furthermore, the falling material, due to the fun-
nel geometry, gets more and more compactified as it ap-
proaches the outlet. As a consequence, we expect that the
flow at the orifice will block again; a new plug is then
formed at the outlet and a new cycle starts.

On the grounds of this mechanism we are able to es-
timate the frequency (or the period T ) of apparition of
plugs at the outlet. We will note, as previously, Cmax the
packing fraction of the plugs. We will assume that a plug
is created at the outlet as soon as the packing fraction
close to the orifice reaches Cmax.

Let us imagine that a plug has been created and moves
upwards with a velocity V . We want to estimate the pack-
ing fraction of the flow at the outlet as the plug moves
upwards. The amount of material per unit time leaving
the plug is proportional to Cmaxl|V | where l is the lat-
eral extent of the plug. It should be noted that the lateral
extent l depends on the distance z (or the height) be-
tween the orifice and the plug; l is simply related to z by
z = (l−D)/(2 tan θ) where 2θ is the opening angle of the
cone defining the flowing region (i.e., θ = α for α < αc
and θ = αc for α > αc). In virtue of mass conservation, we
can state that the material, which detached from the plug
at the height z, arrives at the outlet with a packing frac-
tion C given by C = Cmaxl|V |/[D(|V | + |Vb|)] (Vb is the

1 This explanation has been suggested by the referee

velocity of the beads in the flowing region to be assumed
uniform in a first approximation). The flow will stop as
soon as C reaches Cmax and thus a new plug will appear.
This happens when the material arriving at the outlet is
that which detached from the plug when the latter was at
a critical height zc corresponding to a lateral size lc given
by lc = D(1 + |Vb/V |). The critical height is then easily
found to be zc = D(|Vb/V |)/(2 tan θ). As a consequence,
the elapsed time T between the formation of two succes-
sive plugs is given by T = zc/|V |+ zc/|Vb| (i.e., the time
needed by the plug to reach the height zc plus the time
corresponding to the fall of the beads). This yields

T ' A
D

2 tan θ
(1)

where

A =
|Vb|

|V |

(
1

|V |
+

1

|Vb|

)
· (2)

We thus recover the geometrical factor D/ tan θ in the
expression of T . In the light of the experimental results,
we can state that the evolution of T with the outlet size
and the opening angle of the funnel is dominated by this
geometrical factor. We should, however, point out that A
is not constant; it varies with D and θ in a complicated
manner, but its variation brings only a small correction to
the major evolution of T given by the geometrical factor.

In addition the model suggests that when the funnel
is close to a channel geometry the period goes to infinity.
This means that the density waves should disappear. This
is not what experiment shows: in a channel geometry den-
sity waves are still present and are emitted periodically
in time with a finite period. We can thus conclude that
our model, which is essentially based on geometrical ar-
guments, is not suitable for channel geometry where the
mechanism of formation of density waves should be rather
sought in the dynamical properties of the flow.

The relative success of the model shows that the geom-
etry plays a crucial role in the formation of density waves
in a funnel. Of course, our model is very crude and a fur-
ther analysis taking into account the dynamical aspects of
the problem and the interactions between the beads and
the plane would be strongly desired in order to have a
deeper understanding of the formation of density waves.

6 Conclusion

We have reported experiments on two-dimensional funnel
flow of 1 mm diameter glass beads on an inclined plane and
focused our attention on the flow properties as a function
of the funnel outlet size, the opening angle, and the grav-
ity. We have found that in large-angle funnel geometry
(i.e., in the funnel flow configuration) the flow dynam-
ics is essentially determined by the outlet size D of the
funnel. For D < 20 mm, the flow density remains steady
and homogeneous while for intermediate outlet sizes, the
flow is intermittent consisting of spatially ordered den-
sity waves propagations upwards. Finally for bigger outlet
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sizes (D > 80 mm), density fluctuations become chaotic.
In the intermittent regime, the density waves are gener-
ated periodically in time with a period T which is pro-
portional to D and is independent of the funnel opening
angle (as soon as the flow is of funnel type). The flow
rate W increases with the gravity and the outlet size D
(W ∼ (g sinβ)0.5D1.2). The scaling with D differs slightly
from the Beverloo correlation (W ∼ g0.5D1.5) and may
be a signature of the presence of density waves. In addi-
tion, W is the only measured quantity that varies with
the funnel opening angle (even in the funnel flow con-
figuration) which remains unclear. In small-angle funnel
geometry (i.e., in the mass flow regime), the flowing zone
extends over the whole funnel and therefore the flow rate
W and the period T characterizing density wave formation
are extremely sensitive to the funnel angle. Furthermore
we have seen that the channel is a singular limit of the fun-
nel geometry. The origin of the formation of the density
waves should be radically different in both geometries.

Finally we have presented a simple model based on
geometrical arguments which allows us to explain qual-
itatively the variation of the period T as a function of
the outlet size and the opening angle of the funnel. How-
ever, we are not able to predict the propagation speed of
the density waves, as well as the velocity of the beads in
the flowing region. To do this, it is absolutely necessary
to take into account the dynamical aspects of the problem
and the mechanical properties of granular media. We think
that the dissipation due to friction between the beads and
the plane plays a crucial role in the formation of density
waves. A highly dissipative flow favours the formation of
density waves.

To gain a deeper understanding of the flow dynamics,
it would then be strongly needed to investigate the flow at
the grain level, that is to measure the density and velocity
field of the flow in the low-density region as a function of

the system parameters and the dissipative properties of
the beads.

We gratefully acknowledge fruitful discussions with L. Oger
and R. Delannay.
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